Overview

- Universal short-range wireless capability
- Uses 2.4-GHz band
- Available globally for unlicensed users
- Devices within 10 m can share up to 720 kbps of capacity
- Supports open-ended list of applications
 - Data, audio, graphics, video
Bluetooth Application Areas

- Data and voice access points
 - Real-time voice and data transmissions
- Cable replacement
 - Eliminates need for numerous cable attachments for connection
- Ad hoc networking
 - Device with Bluetooth radio can establish connection with another when in range
Bluetooth Standards Documents

- Core specifications
 - Details of various layers of Bluetooth protocol architecture
- Profile specifications
 - Use of Bluetooth technology to support various applications
Protocol Architecture

- Bluetooth is a layered protocol architecture
 - Core protocols
 - Cable replacement and telephony control protocols
 - Adopted protocols

- Core protocols
 - Radio
 - Baseband
 - Link manager protocol (LMP)
 - Logical link control and adaptation protocol (L2CAP)
 - Service discovery protocol (SDP)
Protocol Architecture

- Cable replacement protocol
 - RFCOMM
- Telephony control protocol
 - Telephony control specification – binary (TCS BIN)
- Adopted protocols
 - PPP
 - TCP/UDP/IP
 - OBEX
 - WAE/WAP
Usage Models

- File transfer
- Internet bridge
- LAN access
- Synchronization
- Three-in-one phone
- Headset
Piconets and Scatternets

- **Piconet**
 - Basic unit of Bluetooth networking
 - Master and one to seven slave devices
 - Master determines channel and phase

- **Scatternet**
 - Device in one piconet may exist as master or slave in another piconet
 - Allows many devices to share same area
 - Makes efficient use of bandwidth
Figure 15.5 Wireless Network Configurations

(a) Cellular system (squares represent stationary base stations)

(b) Conventional ad hoc systems

(c) Scatternets
Radio Specification

- Classes of transmitters
 - Class 1: Outputs 100 mW for maximum range
 - Power control mandatory
 - Provides greatest distance
 - Class 2: Outputs 2.4 mW at maximum
 - Power control optional
 - Class 3: Nominal output is 1 mW
 - Lowest power
Frequency Hopping in Bluetooth

- Provides resistance to interference and multipath effects
- Provides a form of multiple access among co-located devices in different piconets
Frequency Hopping

- Total bandwidth divided into 1MHz physical channels
- FH occurs by jumping from one channel to another in pseudorandom sequence
- Hopping sequence shared with all devices on piconet
- Piconet access:
 - Bluetooth devices use time division duplex (TDD)
 - Access technique is TDMA
 - FH-TDD-TDMA
Frequency Hopping

![Diagram showing frequency hopping with labels for master and slave, frequencies f(k), f(k+1), and f(k+2), and a note of 625 μs.

Figure 15.6 Frequency-Hop Time-Division Duplex
Physical Links between Master and Slave

- Synchronous connection oriented (SCO)
 - Allocates fixed bandwidth between point-to-point connection of master and slave
 - Master maintains link using reserved slots
 - Master can support three simultaneous links

- Asynchronous connectionless (ACL)
 - Point-to-multipoint link between master and all slaves
 - Only single ACL link can exist
Bluetooth Packet Fields

- **Access code** – used for timing synchronization, offset compensation, paging, and inquiry
- **Header** – used to identify packet type and carry protocol control information
- **Payload** – contains user voice or data and payload header, if present
Types of Access Codes

- Channel access code (CAC) – identifies a piconet
- Device access code (DAC) – used for paging and subsequent responses
- Inquiry access code (IAC) – used for inquiry purposes
Access Code

- Preamble – used for DC compensation
 - 0101 if LSB of sync word is 0
 - 1010 if LSB of sync word is 1
- Sync word – 64-bits, derived from:
 - 7-bit Barker sequence
 - Lower address part (LAP)
 - Pseudonoise (PN) sequence
- Trailer
 - 0101 if MSB of sync word is 1
 - 1010 if MSB of sync word is 0
Packet Header Fields

- AM_ADDR – contains “active mode” address of one of the slaves
- Type – identifies type of packet
- Flow – 1-bit flow control
- ARQN – 1-bit acknowledgment
- SEQN – 1-bit sequential numbering schemes
- Header error control (HEC) – 8-bit error detection code
Payload Format

- Payload header
 - L_CH field – identifies logical channel
 - Flow field – used to control flow at L2CAP level
 - Length field – number of bytes of data
- Payload body – contains user data
- CRC – 16-bit CRC code
Error Correction Schemes

- 1/3 rate FEC (forward error correction)
 - Used on 18-bit packet header, voice field in HV1 packet

- 2/3 rate FEC
 - Used in DM packets, data fields of DV packet, FHS packet and HV2 packet

- ARQ
 - Used with DM and DH packets
ARQ Scheme Elements

- Error detection – destination detects errors, discards packets
- Positive acknowledgment – destination returns positive acknowledgment
- Retransmission after timeout – source retransmits if packet unacknowledged
- Negative acknowledgment and retransmission – destination returns negative acknowledgement for packets with errors, source retransmits
Logical Channels

- Link control (LC)
- Link manager (LM)
- User asynchronous (UA)
- User isochronous (UI)
- Use synchronous (US)
Channel Control

- States of operation of a piconet during link establishment and maintenance

- Major states
 - Standby – default state
 - Connection – device connected
Channel Control

- Interim substates for adding new slaves
 - Page – device issued a page (used by master)
 - Page scan – device is listening for a page
 - Master response – master receives a page response from slave
 - Slave response – slave responds to a page from master
 - Inquiry – device has issued an inquiry for identity of devices within range
 - Inquiry scan – device is listening for an inquiry
 - Inquiry response – device receives an inquiry response
Figure 15.12 Bluetooth State Transition Diagram
Inquiry Procedure

- Potential master identifies devices in range that wish to participate
 - Transmits ID packet with inquiry access code (IAC)
 - Occurs in Inquiry state
- Device receives inquiry
 - Enter Inquiry Response state
 - Returns FHS packet with address and timing information
 - Moves to page scan state
Page Procedure

- Master uses devices address to calculate a page frequency-hopping sequence
- Master pages with ID packet and device access code (DAC) of specific slave
- Slave responds with DAC ID packet
- Master responds with its FHS packet
- Slave confirms receipt with DAC ID
- Slaves moves to Connection state
Slave Connection State Modes

- **Active** – participates in piconet
 - Listens, transmits and receives packets
- **Sniff** – only listens on specified slots
- **Hold** – does not support ACL packets
 - Reduced power status
 - May still participate in SCO exchanges
- **Park** – does not participate on piconet
 - Still retained as part of piconet
Bluetooth Audio

- Voice encoding schemes:
 - Pulse code modulation (PCM)
 - Continuously variable slope delta (CVSD) modulation
- Choice of scheme made by link manager
 - Negotiates most appropriate scheme for application
Bluetooth Link Security

- **Elements:**
 - Authentication – verify claimed identity
 - Encryption – privacy
 - Key management and usage

- **Security algorithm parameters:**
 - Unit address
 - Secret authentication key
 - Secret privacy key
 - Random number
LMP PDUs

- General response
- Security Service
 - Authentication
 - Pairing
 - Change link key
 - Change current link key
 - Encryption
LMP PDUs

- Time/synchronization
 - Clock offset request
 - Slot offset information
 - Timing accuracy information request

- Station capability
 - LMP version
 - Supported features
LMP PDUs

- Mode control
 - Switch master/slave role
 - Name request
 - Detach
 - Hold mode
 - Sniff mode
 - Park mode
 - Power control
LMP PDUs

- Mode control (cont.)
 - Channel quality-driven change between DM and DH
 - Quality of service
 - Control of multislot packets
 - Paging scheme
 - Link supervision
L2CAP

- Provides a link-layer protocol between entities with a number of services
- Relies on lower layer for flow and error control
- Makes use of ACL links, does not support SCO links
- Provides two alternative services to upper-layer protocols
 - Connection service
 - Connection-mode service
L2CAP Logical Channels

- **Connectionless**
 - Supports connectionless service
 - Each channel is unidirectional
 - Used from master to multiple slaves

- **Connection-oriented**
 - Supports connection-oriented service
 - Each channel is bidirectional

- **Signaling**
 - Provides for exchange of signaling messages between L2CAP entities
L2CAP Packet Fields for Connectionless Service

- **Length** – length of information payload, PSM fields
- **Channel ID** – 2, indicating connectionless channel
- **Protocol/service multiplexer (PSM)** – identifies higher-layer recipient for payload
 - Not included in connection-oriented packets
- **Information payload** – higher-layer user data
Signaling Packet Payload

- Consists of one or more L2CAP commands, each with four fields
 - Code – identifies type of command
 - Identifier – used to match request with reply
 - Length – length of data field for this command
 - Data – additional data for command, if necessary
L2CAP Signaling Command Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01</td>
<td>Command reject</td>
<td>Reason</td>
</tr>
<tr>
<td>0x02</td>
<td>Connection request</td>
<td>PSM, Source CID</td>
</tr>
<tr>
<td>0x03</td>
<td>Connection response</td>
<td>Destination CID, Source CID, Result, Status</td>
</tr>
<tr>
<td>0x04</td>
<td>Configure request</td>
<td>Destination CID, Flags, Options</td>
</tr>
<tr>
<td>0x05</td>
<td>Configure response</td>
<td>Source CID, Flags, Result, Options</td>
</tr>
<tr>
<td>0x06</td>
<td>Disconnection request</td>
<td>Destination CID, Source CID</td>
</tr>
<tr>
<td>0x07</td>
<td>Disconnection response</td>
<td>Destination CID, Source CID</td>
</tr>
<tr>
<td>0x08</td>
<td>Echo request</td>
<td>Data (optional)</td>
</tr>
<tr>
<td>0x09</td>
<td>Echo response</td>
<td>Data (optional)</td>
</tr>
<tr>
<td>0x0A</td>
<td>Information request</td>
<td>InfoType</td>
</tr>
<tr>
<td>0x0B</td>
<td>Information response</td>
<td>InfoType, Result, Data (optional)</td>
</tr>
</tbody>
</table>
L2CAP Signaling Commands

- **Command reject command**
 - Sent to reject any command

- **Connection commands**
 - Used to establish new connections

- **Configure commands**
 - Used to establish a logical link transmission contract between two L2CAP entities
L2CAP Signaling Commands

- Disconnection commands
 - Used to terminate logical channel

- Echo commands
 - Used to solicit response from remote L2CAP entity

- Information commands
 - Used to solicit implementation-specific information from remote L2CAP entity
Flow Specification Parameters

- Service type
- Token rate (bytes/second)
- Token bucket size (bytes)
- Peak bandwidth (bytes/second)
- Latency (microseconds)
- Delay variation (microseconds)